Additional Practice (continued)

Do the evens

8. Use rate tables to find how much each person makes in 1 hour and how long each person has to work to make $1.
 a. Paula remembers that she worked 20 hours and made $80.

Hours	1	10	20	30
Pay ($)	80	100	1	

 b. Ben works 15 hours and is paid $75.

Hours	1	15	30	
Pay ($)	25	75	190	1

 c. Patrick is paid $12 for 3 hours of work.

Hours	1	3	36	
Pay ($)	12	60	192	1

 d. Kayla is paid $72 for 9 hours of work.

Hours	1	4	9	16
Pay ($)	72	88	1	

9. Bill measures the lengths of six boards he finds in his garage. Name two boards he could be comparing for each ratio given.

 a. The ratio of lengths is 2 : 1. Board ______ to Board ______

 b. The ratio of lengths is 4 : 1. Board ______ to Board ______

 c. The ratio of lengths is 3 : 4. Board ______ to Board ______

 d. The ratio of lengths is 2 : 3. Board ______ to Board ______
10. George is planning his road trip. He uses a vertical rate table.
 a. Complete the rate table for the gas his car will use.

 George's Car

<table>
<thead>
<tr>
<th>Gallons of Gas</th>
<th>Miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

 b. How many gallons of gas will he use if he drives 432 miles?

 c. How many miles can he go if he uses 8 gallons of gas?

11. George uses another vertical rate table to keep track of his gasoline expenses.
 a. Complete the rate table for the cost of the gas he will purchase.

 Gas Purchases

<table>
<thead>
<tr>
<th>Gallons of Gas</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

 b. What is the unit rate comparing the number of dollars to the gallons of gas?

 c. What is the unit rate comparing the gallons of gas to the cost in dollars?
12. Which of the following is equivalent to the ratio 3 to 7? Select all that apply.

- $\frac{6}{14}$
- $\frac{7}{3}$
- 21:56
- $\frac{24}{56}$
- 60 for every 140

13. Mari works 25 hours and makes $200. Complete the rate table using the numbers on the tiles.

<table>
<thead>
<tr>
<th>Hours</th>
<th>Pay ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>200</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

14. Circle the correct unit rate for each situation.

a. Sandi drives 420 miles in 7 hours.

\[
\begin{array}{c}
\frac{1}{16} \\
55 & 60 \\
\frac{2940}{1}
\end{array}
\]

\begin{array}{c|c}
\text{miles per hour} & \text{per bag} \\
\hline
\frac{1}{16} & \frac{1}{12} \\
55 & 1.80 \\
60 & 3.60 \\
2940 & 28.80
\end{array}

b. Four bags of rice cost $7.20.

\begin{array}{c|c}
\text{per bag} & \\
\hline
\frac{0.80}{1} & \\
\frac{1.80}{1} & \frac{1}{12} \\
\frac{3.60}{1} & \frac{1}{4} \\
\frac{28.80}{1} & 6 \\
\end{array}

\begin{array}{c}
\frac{1}{12} \\
\frac{1}{4} \\
6 \\
12
\end{array}

c. Joe needs 0.25 hour to tie 3 decorative bows.

\begin{array}{c}
\frac{1}{12} \\
\frac{1}{4} \\
6 \\
12
\end{array}
Write two ratios that are equivalent to the given ratio.

1. 1 : 3
2. 2 for every 5

3. 5 to 8
4. 4 for every 9

5. 35 for every 50
6. 90 : 180

7. 150 : 180
8. 56 to 84

9. 25 to 75
10. 42 : 126
Investigation 2: Comparing Bits and Pieces

Skill: Ratios and Rates (continued)

Find the unit rate for each situation.
11. Trisha drives 200 miles in 4 hours.

12. Cans of baked beans cost $2.40 for 3 cans.

13. Derek put 26 batteries into 13 smoke detectors.

14. Crystal spent $83.70 on 6 tickets to the theater.

15. Garrett needs 0.5 hour to install 4 new tires.

16. There are 630 calories in 6 bananas.
5. Name three fractions that are equivalent to each decimal below.
 a. 0.60 b. 1.7 c. 0.05 d. 2.3 e. 0.15 f. 0.625

6. Name a decimal that is equivalent to each fraction below.
 a. $\frac{1}{2}$ b. $\frac{3}{15}$ c. $\frac{7}{4}$ d. $\frac{3}{8}$ e. $\frac{111}{20}$ f. $\frac{18}{24}$

7. Sarah can jog at a steady pace of 4.75 miles per hour, and Tony can jog at a steady pace of 4.25 miles per hour.
 a. How many miles can Sarah jog in 30 minutes? Explain your reasoning.

 b. How many miles can Tony jog in 30 minutes?

 c. If Sarah and Tony jog for 45 minutes, how much farther will Sarah go than Tony? Explain your reasoning.
10. Paul claims that the fraction $\frac{1}{3}$ is a good estimate for the decimal 0.3.
a. Do you agree or disagree with Paul’s claim? Explain your reasoning.

b. Is Paul’s estimate less than, greater than, or equal to 0.3? Explain your reasoning.

11. Locate and label the points representing $\frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{5}{2}$.

12. Explain what the negative number means in each situation.
a. The elevation of a diver is -120 meters.

b. A business had an income of $-1,200 for one day.

c. The temperature outside is -7° Fahrenheit.

d. A song moved -5 positions on the music chart.
17. Circle the correct symbols to make each statement true.
 a. 0.48 [>] 0.408
 b. \(\frac{2}{7} [\leq] 0.3 \)
 c. \(\frac{5}{6} [\geq] \frac{5}{5} \)
 d. 0.78 [>] 0.7800
 e. 1.26 [\geq] 1.026

18. Each grid represents 1. Below each grid, use the values from the tiles to write the fraction and decimal modeled by the shaded areas.

 - Fraction: \(\frac{3}{5} \), \(\frac{3}{20} \), \(\frac{3}{25} \), \(\frac{3}{50} \)
 - Decimal: 0.15, 0.60, 0.015, 0.06

19. Shade and label the points listed below on the number line.
 \(1 \frac{1}{4}, 0.25, -\frac{3}{2}, -1.75 \)
Skill: Fractions and Decimals

Comparing Bits and Pieces

Each grid represents 1. What fraction and decimal are modeled by the shaded area?

1.
2.
3.

Write each decimal as a fraction.
4. 0.6
5. 1.25
6. 0.74
7. 0.29
8. 0.635
9. 0.8
10. 0.95
11. 0.645

Write each fraction as a decimal.
12. \(\frac{9}{100} \)
13. \(\frac{7}{25} \)
14. \(\frac{3}{50} \)
15. \(\frac{1}{125} \)

Write each of the decimal numbers in words.
16. 12.873
17. 8.0552
18. 0.00065
Skill: Percents

Shade each grid to represent each of the following percents.
1. 53%
2. 23%
3. 71%

Write a percent for each shaded figure.
4.
5.
6.

The table shows the fraction of students who participated in extracurricular activities from 1965 to 2000. For Exercises 7–14, complete the table by writing each fraction as a percent.

<table>
<thead>
<tr>
<th>Students' Extracurricular Choices</th>
</tr>
</thead>
<tbody>
<tr>
<td>------</td>
</tr>
<tr>
<td>Student participation (fraction)</td>
</tr>
<tr>
<td>Student participation (percent)</td>
</tr>
</tbody>
</table>

Write each fraction as a percent.
15. 4/5
16. 3/5
17. 9/10
18. 3/10
19. 6/25
20. 7/100
21. 9/50
22. 9/25
23. 2/5
24. 7/10
25. 4/25
26. 16/25
Write each percent as a decimal and as a fraction.

1. 46%
2. 17%
3. 90%
4. 5%

Write each decimal as a percent and as a fraction.

5. 0.02
6. 0.45
7. 0.4
8. 0.92

Write each fraction as a decimal and as a percent.

9. \(\frac{3}{5}\)
10. \(\frac{7}{10}\)
11. \(\frac{13}{25}\)
12. \(\frac{17}{20}\)

13. Write each fraction or decimal as a percent. Write the percent (without the percent sign) in the puzzle.

ACROSS **DOWN**

1. \(\frac{3}{5}\) 1. \(\frac{13}{20}\)
2. \(\frac{1}{5}\) 2. 0.25
3. 0.55 3. \(\frac{1}{2}\)
4. 0.23 4. \(\frac{3}{20}\)
5. \(\frac{7}{20}\) 5. 0.24
6. 0.17 6. \(\frac{3}{10}\)
7. 0.4 7. 0.1
8. \(\frac{9}{25}\) 8. \(\frac{4}{25}\)
Additional Practice (continued)

Do circled problems first. Then finish evens of packet by Jan. 20

8. Use rate tables to find how much each person makes in 1 hour and how long each person has to work to make $1.
 a. Paula remembers that she worked 20 hours and made $80.

<table>
<thead>
<tr>
<th>Hours</th>
<th>1</th>
<th>10</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>1/4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pay ($)</td>
<td>4</td>
<td>40</td>
<td>80</td>
<td>100</td>
<td>120</td>
<td>1</td>
</tr>
</tbody>
</table>

 \[\frac{80 \div 20 \text{ hrs}}{80} = \frac{4 \text{ per hour}}{80} \]
 \[\frac{20 \text{ hrs}}{1/4 \text{ hrs}} = \frac{1}{4} \text{ hrs.} \]

 x 5

<table>
<thead>
<tr>
<th>Hours</th>
<th>1</th>
<th>5</th>
<th>15</th>
<th>30</th>
<th>38</th>
<th>1/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pay ($)</td>
<td>5</td>
<td>25</td>
<td>75</td>
<td>150</td>
<td>190</td>
<td>1</td>
</tr>
</tbody>
</table>

 \[\frac{75 \div 15}{5} = 5 \]
 \[\frac{5}{5} \]

 c. Patrick is paid $12 for 3 hours of work.

<table>
<thead>
<tr>
<th>Hours</th>
<th>1</th>
<th>3</th>
<th>15</th>
<th>36</th>
<th>48</th>
<th>2/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pay ($)</td>
<td>4</td>
<td>12</td>
<td>60</td>
<td>144</td>
<td>192</td>
<td>1</td>
</tr>
</tbody>
</table>

 \[\frac{48 \div 2}{5} = \frac{48}{10} \]

 d. Kayla is paid $72 for 9 hours of work.

<table>
<thead>
<tr>
<th>Hours</th>
<th>1</th>
<th>4</th>
<th>9</th>
<th>16</th>
<th>18</th>
<th>1/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pay ($)</td>
<td>8</td>
<td>32</td>
<td>72</td>
<td>88</td>
<td>128</td>
<td>1</td>
</tr>
</tbody>
</table>

 \[\frac{72 \div 9}{8} = \frac{72}{72} \]
 \[\frac{8}{8} = 0.125 \]

9. Bill measures the lengths of six boards he finds in his garage. Name two boards he could be comparing for each ratio given.

 \[\begin{array}{c}
 \text{A} \quad \text{12 in.} \\
 \text{B} \quad \text{8 in.} \\
 \text{C} \quad \text{9 in.} \\
 \text{D} \quad \text{24 in.} \\
 \text{E} \quad \text{10 in.} \\
 \text{F} \quad \text{6 in.}
 \end{array} \]

 a. The ratio of lengths is 2:1. Board \(\text{D} \) to Board \(\text{A} \)
 \[2:1 = 24:12 \]

 b. The ratio of lengths is 4:1. Board \(\text{D} \) to Board \(\text{F} \)
 \[4:1 = 24:6 \]

 c. The ratio of lengths is 3:4. Board \(\text{___} \) to Board \(\text{___} \)

 d. The ratio of lengths is 2:3. Board \(\text{___} \) to Board \(\text{___} \)
10. George is planning his road trip. He uses a vertical rate table.
 (a) Complete the rate table for the gas his car will use.

 George's Car
 \[
 \begin{array}{c|c}
 \text{Gallons of Gas} & \text{Miles} \\
 \hline
 1 & 36 \\
 2 & 72 \\
 3 & 108 \\
 4 & 144 \\
 5 & 180 \\
 6 & 216 \\
 \end{array}
 \]

 (b) How many gallons of gas will he use if he drives 432 miles?
 \[
 \frac{432}{36} = 12
 \]

 (c) How many miles can he go if he uses 8 gallons of gas?
 \[
 8 \times 36 = 288 \text{ miles}
 \]

11. George uses another vertical rate table to keep track of his gasoline expenses.
 (a) Complete the rate table for the cost of the gas he will purchase.

 Gas Purchases
 \[
 \begin{array}{c|c}
 \text{Gallons of Gas} & \text{Cost ($)} \\
 \hline
 6 & 24 \\
 5 & 20 \\
 4 & 16 \\
 3 & 12 \\
 2 & 8 \\
 1 & 4 \\
 \end{array}
 \]

 (b) What is the unit rate comparing the number of dollars to the gallons of gas?
 \[
 \text{Cost per gallon} = \frac{4}{1} = 4 \text{ per gallon}
 \]

 (c) What is the unit rate comparing the gallons of gas to the cost in dollars?
 \[
 \text{Gallons per dollar} = \frac{6}{24} = \frac{1}{4} \text{ gallon for $1}.\]
12. Which of the following is equivalent to the ratio 3 to 7? Select all that apply.

- \(\frac{6}{2} \div \frac{2}{14} = \frac{3}{7} \)
- \(\frac{7}{3} \)
- \(21:56 \) and \(\frac{21}{7} \div 7 = \frac{3}{8} \)
- \(\frac{24}{56} \div \frac{8}{3} = \frac{3}{7} \)
- 60 for every 140

\[\frac{60}{140} = \frac{3}{7} \]

13. Mari works 25 hours and makes $200. Complete the rate table using the numbers on the tiles.

<table>
<thead>
<tr>
<th>Hours</th>
<th>Pay ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$8</td>
</tr>
<tr>
<td>5</td>
<td>$40</td>
</tr>
<tr>
<td>15</td>
<td>$120</td>
</tr>
<tr>
<td>25</td>
<td>$200</td>
</tr>
<tr>
<td>(\frac{1}{8})</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\frac{1}{8} \div 8 = \frac{1}{8} \text{ hrs} \]

14. Circle the correct unit rate for each situation.

a. Sandi drives 420 miles in 7 hours.

\[\begin{array}{cc}
16 & 16 \\
55 & 55 \\
60 & 60 \\
2940 & 2940 \\
\end{array} \]

\[\frac{420}{7} = 60 \]

b. Four bags of rice cost $7.20.

\[\begin{array}{cc}
12 & 0.80 \\
4 & 1.80 \\
6 & 3.60 \\
12 & 28.80 \\
\end{array} \]

\[\frac{7.20}{4} = 1.80 \]

c. Joe needs 0.25 hour to tie 3 decorative bows.

\[\begin{array}{cc}
12 & 1 \\
4 & 1 \\
6 & 1 \\
\end{array} \]

\[3 \div 0.25 = 12 \]
Write two ratios that are equivalent to the given ratio.

1. 1 : 3
 \[
 \frac{2}{5} = \frac{4}{10} = \frac{6}{15}
 \]

2. 2 for every 5

3. 5 to 8

4. 4 for every 9
 \[
 \frac{4}{9} = \frac{8}{18} = \frac{12}{27}
 \]

5. 35 for every 50

6. 90 : 180
 \[
 \frac{90 \div 90}{180 \div 90} = \frac{1}{2} \quad \frac{90 \times 2}{180 \times 2} = \frac{180}{360}
 \]

7. 150 : 180

8. 56 to 84
 \[
 \frac{56 \div 4}{84 \div 4} = \frac{14}{21} \div 7 = \frac{2}{3}
 \]
 or
 \[
 \frac{56 \times 2}{84 \times 2} = \frac{112}{168}
 \]

9. 25 to 75

10. 42 : 126
 \[
 \frac{42 \div 6}{126 \div 6} = \frac{7}{21}
 \]
 or
 \[
 \frac{42 \times 2}{126 \times 2} = \frac{84}{252}
 \]
Skill: Ratios and Rates (continued)

Find the unit rate for each situation.

11. Trisha drives 200 miles in 4 hours.

12. Cans of baked beans cost $2.40 for 3 cans.

 $ \frac{2.40}{3} = \0.80 per can

13. Derek put 26 batteries into 13 smoke detectors.

14. Crystal spent $83.70 on 6 tickets to the theater.

 $ \frac{83.70}{6} = \13.95 per ticket

15. Garrett needs 0.5 hour to install 4 new tires.

 \[
 \frac{0.5}{4} = 0.125 \text{ hrs per tire} \quad \frac{4}{0.5} = 8 \text{ tires per hr.}
 \]

16. There are 630 calories in 6 bananas.

 \[630 \text{ Calories} \div 6 \text{ bananas} = 105 \text{ Calories per banana}\]
5. Name three fractions that are equivalent to each decimal below.
 a. 0.60 b. 1.7 c. 0.05 d. 2.3 e. 0.15 f. 0.625

 \[\frac{60}{100} \quad \frac{6}{10} \div 2 \quad \frac{315}{5}\]

6. Name a decimal that is equivalent to each fraction below.
 a. \(\frac{1}{2}\) b. \(\frac{3}{15}\) c. \(\frac{7}{4}\) d. \(\frac{3}{8}\) e. \(\frac{111}{20}\) f. \(\frac{18}{24}\)

 \[0.5 \quad 3\div 15 \quad 7\div 4 \quad 3\div 8 \quad 5.55 \quad 0.75\]

7. Sarah can jog at a steady pace of 4.75 miles per hour, and Tony can jog at a steady pace of 4.25 miles per hour.
 a. How many miles can Sarah jog in 30 minutes? Explain your reasoning.

 b. How many miles can Tony jog in 30 minutes?

 c. If Sarah and Tony jog for 45 minutes, how much farther will Sarah go than Tony? Explain your reasoning.
10. Paul claims that the fraction $\frac{1}{3}$ is a good estimate for the decimal 0.3.
 a. Do you agree or disagree with Paul’s claim? Explain your reasoning.

 Yes $\frac{1}{3} = 0.\overline{3}$ forever, which is about 0.3

 b. Is Paul’s estimate less than, greater than, or equal to 0.3? Explain your reasoning.

 Greater $\frac{1}{3} = 0.3333\ldots$

11. Locate and label the points representing $\frac{1}{2}, \frac{11}{4}, -\frac{3}{4}, \frac{5}{2}, \frac{-23}{4}, \frac{5}{2}$.

12. Explain what the negative number means in each situation.
 a. The elevation of a diver is −120 meters.

 120 meters below sea level

 b. A business had an income of −$1,200 for one day.

 Lost $1,200 in one day

 c. The temperature outside is −7° Fahrenheit.

 7 degrees below zero

 d. A song moved −6 positions on the music chart.

 Back 6 positions
17. Circle the correct symbols to make each statement true.

- **a.** \(\frac{0.48}{0.408} = \) \(\circ \) \(\boxed{\text{not equal}} \)
- **b.** \(\frac{2}{7} = 0.3 \) \(\circ \) \(2 \div 7 = 0.28... \)
- **c.** \(\frac{5}{6} = \frac{5}{5} = 1 \) \(\circ \) \(\frac{5}{6} \) is less than 1
- **d.** \(\frac{0.78}{0.7800} = \frac{7800}{19000} \) \(\circ \)
- **e.** \(\frac{1.26}{1.026} = \) \(\circ \) \(\boxed{\text{not equal}} \)

18. Each grid represents 1. Below each grid, use the values from the tiles to write the fraction and decimal modeled by the shaded areas.

- **a.** \(\frac{0.15}{0.60} = \) \(\frac{0.015}{0.06} = \)
- **b.** \(\frac{3}{5} = \frac{3}{20} = \) \(\frac{3}{25} = \frac{3}{50} = \)

19. Shade and label the points listed below on the number line.

- **a.** \(\frac{1}{4}, 0.25, -\frac{3}{2}, -1.75 = \) \(\frac{3}{2} = \) \(-1 \frac{1}{2} \)
- **b.** \(-\frac{2}{2} = -1 \frac{1}{2} \)
Skill: Fractions and Decimals

Comparing Bits and Pieces

Each grid represents 1. What fraction and decimal are modeled by the shaded area?

1. \[
\begin{array}{c}
\begin{array}{c}
\text{Grid A} \\
\text{Shaded} \\
\end{array}
\end{array}
\]
2. \[
\begin{array}{c}
\begin{array}{c}
\text{Grid B} \\
\text{Shaded} \\
\end{array}
\end{array}
\]
3. \[
\begin{array}{c}
\begin{array}{c}
\text{Grid C} \\
\text{Shaded} \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
0.90 = 0.9 \\
90 = \frac{9}{10} \\
0.04 = \frac{4}{100}
\end{array}
\end{array}
\]

Write each decimal as a fraction.

4. \[
\frac{6}{10}
\]
5. \[
\frac{74}{100}
\]
6. \[
\frac{635}{1000}
\]
7. \[
\frac{95}{100}
\]

Write each fraction as a decimal.

8. \[
\frac{9}{100}
\]
9. \[
\frac{7}{25}
\]
10. \[
\frac{3x^2}{50x^2}
\]
11. \[
\frac{1}{125}
\]

Write each of the decimal numbers in words.

12. 12.873 \quad \text{Twelve and eight hundred seventy-three thousandths.}

13. 8.0552

14. 0.00065 \quad \text{Sixty five hundred-thousandths}
Shade each grid to represent each of the following percents.

1. 53%
2. 23%
3. 71%

Write a percent for each shaded figure.

4. [Grid shaded to represent 36%]
5. [Grid shaded to represent a different percent]
6. [Grid shaded to represent 75%]

The table shows the fraction of students who participated in extracurricular activities from 1965 to 2000. For Exercises 7–14, complete the table by writing each fraction as a percent.

Students' Extracurricular Choices

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Student participation (fraction)</td>
<td>(\frac{3}{4})</td>
<td>(\frac{8}{10})</td>
<td>(\frac{17}{20})</td>
<td>(\frac{39}{50})</td>
<td>(\frac{21}{25})</td>
<td>(\frac{19}{25})</td>
<td>(\frac{87}{100})</td>
<td>(\frac{9}{10})</td>
</tr>
<tr>
<td>Student participation (percent)</td>
<td>7.</td>
<td>8.</td>
<td>9.</td>
<td>10.</td>
<td>11.</td>
<td>12.</td>
<td>13.</td>
<td>14.</td>
</tr>
</tbody>
</table>

Write each fraction as a percent.

15. \(\frac{4}{5}\) = 0.8 = 80%
16. \(\frac{3}{5}\) = 0.6 = 60%
17. \(\frac{9}{10}\)
18. \(\frac{3}{10}\) = 0.3 = 30%
19. \(\frac{6}{25}\)
20. \(\frac{7}{100}\) = 0.07 = 7%
21. \(\frac{9}{50}\)
22. \(\frac{9}{25}\) = \(\frac{36}{100}\) = 36%
23. \(\frac{2}{5}\)
24. \(\frac{7}{10}\) = 0.7 = 70%
25. \(\frac{4}{25}\)
26. \(\frac{16}{25}\) = \(\frac{64}{100}\) = 64%
Skill: Percents, Fractions, and Decimals

Write each percent as a decimal and as a fraction.
1. 46%
 0.46
 \[
 \frac{46}{100}
 \]
2. 17%
 0.17
 \[
 \frac{17}{100}
 \]
3. 90%
 0.90
 \[
 \frac{90}{100}
 \]
4. 5%
 0.05
 \[
 \frac{5}{100}
 \]

Write each decimal as a percent and as a fraction.
5. 0.02
 2%
 \[
 \frac{2}{100}
 \]
6. 0.45
 45%
 \[
 \frac{45}{100}
 \]
7. 0.4
 40%
 \[
 \frac{40}{100}
 \]
8. 0.92
 92%
 \[
 \frac{92}{100}
 \]

Write each fraction as a decimal and as a percent.
9. \(\frac{3}{5}\)
 0.6
 60%
 \[
 \frac{3}{5} = 0.6 = 60\%\]
10. \(\frac{7}{10}\)
 0.7
 70%
 \[
 \frac{7}{10} = 0.7 = 70\%\]
11. \(\frac{13}{25}\)
 0.52
 52%
 \[
 \frac{13}{25} = 0.52 = 52\%\]
12. \(\frac{17}{20} \times \frac{5}{3} = \frac{85}{100} = 0.85 = 85\%\)
 \[
 \frac{17}{20} \times \frac{5}{3} = \frac{85}{100} = 0.85 = 85\%\]

13. Write each fraction or decimal as a percent. Write the percent (without the percent sign) in the puzzle.

ACROSS
1. \(\frac{3}{5} = 60\%\)
2. \(\frac{1}{5} = 20\%\)
3. 0.55
4. 0.23
5. \(\frac{7}{20}\)
6. 0.17
7. 0.4
8. \(\frac{9}{25}\)

DOWN
1. 60
2. 20
3. 55
4. 1
5. 23
6. 35
7. 17
8. 1
9. 40
10. 36